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Abstract
The reduction of spatial symmetry can have qualitative effects for a given
quantum system, such as splitting of energy levels that are degenerate in the
unperturbed case. Can the breaking of temporal symmetry have a similar
effect? Using a nonlinear quantum mechanical model to describe the effective
interaction of simple, exactly solvable quantum systems with some dissipative
environment, the time-symmetry-breaking effect of this interaction on
the ground-state energy of these systems can be studied analytically. Also, in
the case of dynamical properties such as tunnelling currents, the breaking
of time-reversal symmetry can have quite unexpected effects. In general,
a dissipative environment is assumed to inhibit the motion of a dynamical
system, e.g., by reducing the frequency and amplitude of a harmonic oscillator.
Our study shows, however, that under certain resonance-like conditions, the
interaction with the environment can also create currents that are not present
in the unperturbed system. These results follow directly from the analytical
solutions of our model.

PACS numbers: 03.65.Ta, 03.65.Ca, 05.70.Ln

1. Introduction

Classical Hamiltonian dynamics, as well as conventional quantum mechanics, are reversible,
conservative theories, i.e. the direction of time does not matter and the energy of the system
is a constant. These theories apply solely to isolated systems. Real systems, however, are
usually in contact with some kind of environment—at the very least, when they are measured
in an experiment, they are no longer isolated. It can be assumed—and this is the conventional
point of view—that the interaction with the environment only causes some small quantitative
changes in the behaviour of the system that can be described adequately by, e.g., perturbation
theory. However, the interaction with some environment usually breaks the time-reversal
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symmetry of the dynamics of a system. Also, it is known, e.g., from ligand-field theory,
that the breaking of spatial symmetry can have quite important qualitative consequences, e.g.,
splitting of degenerate energy levels. One question to be addressed in this paper is whether
a similar energetic effect can also arise by breaking the temporal symmetry. However, it is
not only the energetics of a quantum system that is influenced by an environment, it is the
dynamics as well. For certain systems in contact with some dissipative environment, e.g.,
in the quantum Hall effect or high-TC superconductivity, it is known that the change of an
environmental parameter, for instance the temperature, can result in qualitative changes of the
dynamics of the system, namely, in the creation or destruction of currents. The possibility
of qualitative changes of the dynamics of dissipative quantum systems that can be described
simply by introducing and varying an environmental parameter will also be addressed in this
paper.

Since we are interested only in the system and the effect the environment has on it, but
not in the details of the interaction or the environment, we choose a model that allows for
the description of a system by a wavefunction that can always be normalized, even if it is in
contact with some environment, and that possesses exact analytical solutions, thus allowing
the qualtitative consequences of changes of parameters, etc to be seen immediately. This
model is based on a nonlinear (NL) modification of the Schrödinger equation (SE) and can
be traced back to the conventional system-plus-reservoir approach, which will be discussed
in section 2. For the systems we are interested in, the NLSE possesses exact solutions in
the form of Gaussian wave packets (WP). Therefore, in section 3, we give a short outline of
the dynamics and energetics of these WPs and introduce the quantities that will be applied to
describe and study these properties.

In section 4, the qualtitative changes in the dynamics and energetics of the WPs, caused by
the breaking of time-reversal symmetry, will be discussed in detail for the damped free motion
and the damped harmonic oscillator. Finally, in section 5, the results will be summarized and
possible consequences discussed.

2. Physically equivalent models for the description of dissipative systems

A conventional way of describing a dissipative system with irreversible time-evolution is
the system-plus-reservoir approach [1–3], where the system of interest is coupled to a large
number of environmental degrees of freedom (e.g. harmonic oscillators), with subsequent
elimination of these by some averaging processes. The whole, i.e. the system-plus-reservoir,
is considered a closed Hamiltonian system (classically, as well as quantum mechanically). Due
to the large number of environmental degrees of freedom that are involved and the necessary
limits and averages that have to be taken, the calculations can become rather cumbersome
and lose transparency. Other approaches, therefore, attempt, from the very beginning, to find
a Hamiltonian description of the dissipative system alone, without taking the environment
explicitly into account. The most well-known, and often-quoted, approach is that of Caldirola
[4] and Kanai [5] which uses an explicitly time-dependent Hamiltonian of the form

HCK = 1

2m
e−γ tp2

CK + eγ tV (x) (1)

(with canonical momentum pCK = p exp(γ t), where p is the usual kinetic momentum
p = mẋ) which yields the proper equations of motion for a system exposed to a linear
velocity-dependent frictional force. This model and its quantum analogue, obtained by
canonical quantization, have been discussed extensively in the literature (see e.g. [6–12]).
Although it was applied frequently for the description of dissipative systems, it was also
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criticized by various authors [13–15]. The most serious point of criticism raised against this
model is that after quantization, this Hamiltonian leads to an apparent violation of Heisenberg’s
uncertainty principle. A puzzling situation arose when Sun and Yu [16] showed that the same
Hamiltonian operator could be obtained by standard procedures, just starting from the above-
mentioned conventional system-plus-reservoir approach and should, therefore, be physically
equivalent to this. This puzzle was solved by showing that it is actually not the Hamiltonian
operator that leads to the violation of the uncertainty relation, but the inappropriate treatment
of the corresponding wavefunctions. Since the transition to HCK involves, classically, a non-
canonical and, quantum mechanically, a non-unitary transformation, the wavefunctions must
also be transformed accordingly and have a different physical meaning in the Caldirola–Kanai
model from their meaning in the physical system described by the SE (in the conservative
case); for a detailed discussion see [17].

However, the problems of violation of the uncertainty principle and transformation of
the wavefunction do not occur in our model which uses a nonlinear modification of the SE
that describes the system alone, i.e. similar to the Caldirola–Kanai model but, in our case, the
interpretation of the wavefunction and the quantities calculated with them (such as position
and momentum uncertainties) are the same as for the usual SE. Moreover, it has been shown
[17] that our NLSE can be transformed into the Caldirola–Kanai equation with the help of
a well-defined transformation that establishes the physical equivalence of the two models
and, thus, also the physical equivalence between our description using an NLSE and the
corresponding system-plus-reservoir approach. An advantage of our approach, compared to
that of the system-plus-reservoir, is that it immediately yields exact analytical solutions and it
also does not suffer the shortcomings of several other approaches [18–20] also using NLSEs
for the description of dissipative systems (see also [6]).

A short outline of how to obtain our NL model is given in the following. The
investigations shall be restricted to one spatial dimension but extension to higher dimensions is
straightforward. It has been shown [21–23] that the above-mentioned problems can be solved,
or avoided, using an approach that starts by modifying the continuity equation

∂

∂t
� +

∂

∂x
j (x, t) = ∂

∂t
� +

∂

∂x
(�v−) = 0 (2)

for the density �(x, t) = �∗(x, t)�(x, t) (where the convection current density j (x, t) is
defined as j = �v− = ( h̄

2mi )(�
∗ ∂

∂x
� − � ∂

∂x
�∗)) with the wavefunction �(x, t) being the

solution of the corresponding time-dependent SE,

ih̄
∂

∂t
�L(x, t) =

[
− h̄2

2m

∂2

∂x2
+ V (x)

]
�L(x, t) = HL�L(x, t). (3)

Madelung [24] and Mrowka [25] had introduced a method of separating the real continuity
equation (2) into two complex conjugate equations in order to rederive the conventional linear
SE without applying Hamilton’s form of classical mechanics, only Newton’s form (that also
allows for dissipative frictional forces). Our modification consists in adding a time-symmetry-
breaking diffusion term to the continuity equation, thus arriving at the Fokker–Planck-type
equation

∂

∂t
� +

∂

∂x
(�v−) − D

∂2

∂x2
� = 0. (4)

The inclusion of a diffusion current density was later supported on group theoretical
grounds; it was derived from the analysis of representations of the Diff(R3) group by Doebner
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and Goldin [26]. However, it faces a problem when trying to follow Madelung and Mrowka’s
procedure, as separation of the term

−D

∂2

∂x2 �

�
= −D

[
∂2

∂x2 �

�
+

∂2

∂x2 �
∗

�∗ + 2

(
∂
∂x

�

�

)(
∂
∂x

�∗

�∗

)]
(5)

because of the last contribution on the rhs, is not generally possible.
Nevertheless, it could be shown that there are physically meaningful cases where fulfilment

of an additional condition allows separation. The condition we use is

−D

∂2

∂x2 �

�
= γ (ln � − 〈ln �〉) (6)

(with 〈· · ·〉 = ∫
�∗ · · ·� dx), where the second term on the rhs is necessary to allow for

normalization of the wavefunctions. After separation, the choice of (6) for the diffusion term
leads to the NLSE

ih̄
∂

∂t
�NL(x, t) =

[
− h̄2

2m

∂2

∂x2
+ V (x) + γ

h̄

i
(ln �NL − 〈ln �NL〉)

]
�NL(x, t)

=
[
HL + γ

h̄

i
(ln �NL − 〈ln �NL〉)

]
�NL(x, t). (7)

The logarithmic nonlinearity corresponds to a linear velocity-dependent frictional force,
with friction coefficient γ , caused by the interaction with a dissipative environment that does
not appear explicitly. Despite the imaginary contribution from the logarithmic term, the
solutions of the NLSE are normalizable.

It should be mentioned that there are also other ways of treating the diffusion term in
the Fokker–Planck equation (4) in order to obtain a corresponding complex SE. Doebner and
Goldin, e.g., added half of the non-separable contribution on the rhs of equation (5) to each of
the equations for � and �∗, also arriving at an NLSE [26], but having to pay the price of the
equation for � also containing explicitly �∗ and vice versa (for further details see [27]).

It also should be noted that nonlinear modifications of the SE have usually some
problematic aspects, e.g. the fact that, in general, the superposition principle does not apply.
However, it has been shown that in our model, e.g., Gaussian WP solutions of the log NLSE
for the damped free motion can be constructed by a superposition of plane-wave type solutions
that are similar to those in the undamped case [22]. This might be related to the property
of our nonlinear equation being linearizable by a non-unitary transformation to yield the
Caldirola–Kanai equation. Similarly, the above-mentioned Doebner–Goldin NLSE can also
be linearized to yield the same Caldirola–Kanai equation, however, with the help of a nonlinear
gauge transformation. (For further details see [28].)

It even seems possible to make a link to the usual description of dissipative quantum
systems in the framework of a linear master equation for the density operator. Progress in
this direction, starting on the wavefunction level from the Doebner–Goldin NLSE, has been
achieved by Dodonov and Mizrahi [29, 30]. Connections between an NLSE and a master
equation of Lindblad form have also been shown by Gisin [31]. Since our log NLSE can also
be written in a form similar to that applied by Gisin and is, for certain constraints, identical
with the Doebner–Goldin equation, the desired links should also be possible in our case. Work
in this direction is in progress.

Under certain conditions, however, a description of dissipative systems in terms of an SE,
rather than a master equation, is possible, but then, generally, fluctuations have to be considered
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which give rise to stochastic terms. In principle, the above-mentioned derivation of our NLSE
also allows for the inclusion of additional stochastic terms [21]. However, in common master
equations for Brownian motion, the noise cancels if the system is in a coherent state. For the
problems being discussed in this paper, it is sufficient to consider the Gaussian WP solutions
of our NLSE (7) that exist for the damped free motion and the damped harmonic oscillator, as
in the undamped case. They can physically be interpreted as being similar to coherent states;
in cases where they represent minimum uncertainty WPs, they even fulfil exactly one of the
definitions of coherent states [11]. In order to examine the influence of the environment on
these WPs, the dynamics and energetics of Gaussian WPs shall be written in an appropriate
form, as shown in the following section. The relations will be given explicitly for the harmonic
oscillator, V = m

2 ω2x2. If not otherwise specified, the corresponding expressions for the free
motion, V = 0, can be arrived at by taking the limit ω → 0.

3. Dynamics and energetics of Gaussian wave packets

For both the problems—the free motion and harmonic oscillator—addressed in this paper,
exact analytical solutions exist for the conservative SE, as well as for our dissipative NLSE.
In particular, Gaussian WP-type solutions can be found in all these cases [32]. The particle
aspect of the system is expressed by the maximum of the WP and its time evolution, the wave
aspect by the width of the WP and its capability of spreading in time.

Writing the WP solution of the SE explicitly in the form

�WP(x, t) = N(t) exp

{
i

[
y(t)x̃2 +

〈p〉
h̄

x̃ + K(t)

]}
(8)

(where x̃ = x −〈x〉 = x −η(t)), shows that the maximum at position 〈x〉 follows the classical
trajectory η(t). The explicit form of N(t) and K(t) is not relevant to the following discussion.
The WP-width,

√
〈x̃2〉 (where 〈x̃2〉 = 〈x2〉 − 〈x〉2), is connected with the imaginary part of

the complex coefficient of x̃2 in the exponent, y(t) = yR(t) + iyI(t), via

2h̄

m
yI = h̄

2m〈x̃2〉 = 1

α2(t)
. (9)

Inserting the WP into the SE proves that 〈x〉 = η(t) obeys the classical Newtonian
equation for a corresponding point particle,

η̈ + ω2η = 0. (10)

To determine the time-dependence of the WP-width, the complex, quadratically nonlinear
equation of Riccati type,

2h̄

m
ẏ +

(
2h̄

m
y

)2

+ ω2 = 0 (11)

must be solved. Using

2h̄

m
yR = −1

2

ẏI

yI
= α̇

α
(12)

this complex equation can also be transformed into the real nonlinear Newton-type equation

α̈ + ω2α = 1

α3
(13)

for the variable α = (2m〈x̃2〉/h̄)1/2 which was introduced in equation (9) and is, apart from a
constant factor, identical with the WP-width. This variable will be useful later on to express
other physical quantities, such as ground-state energies. Equation (13) was first discussed by
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Ermakov (1880!) [33] and later reconsidered in a physical, particularly quantum mechanical,
context by several other authors [34]. The solution of (13) also provides information on
the non-classical part of the dynamics (and, thus, the tunnelling currents) contained in the
convection current density that occurs in the continuity equation (2) and the Fokker–Planck
equation (4), since the corresponding velocity field v− can be obtained from α and α̇ as

v− = 2h̄

m
yRx̃ + 〈v〉 = α̇

α
x̃ + η̇. (14)

Particle and wave aspects of the quantum systems being considered are not only reflected by
the occurrence of two different equations of motion describing the dynamics of the system
but, also, the energy contains two corresponding contributions. Calculating the energy mean
value with the Gaussian WP yields

〈E〉 = 〈HL〉 = 1

2m
〈p2〉 +

m

2
ω2〈x2〉

=
(

1

2m
〈p〉2 +

m

2
ω2〈x〉2

)
+

(
1

2m
〈p̃2〉 +

m

2
ω2〈x̃2〉

)
= Ecl + ẼL. (15)

This is different from the classical energy, Ecl, due to the dispersion of position and
momentum. The energy difference ẼL can also be expressed in terms of the real and imaginary
parts of the complex variable y(t), or by the variable α and its time-derivative,

ẼL = h̄2

2m

y2
R + y2

I

yI
+

m

2
ω2 1

yI
= h̄

4

(
α̇2 +

1

α2

)
+

h̄

4
ω2α2. (16)

This quantity is just the constant ground-state energy and can even be written as a
Hamiltonian that provides the equation of motion for α, provided appropriate canonical
momenta are introduced (for details see [35]).

So, the dynamics (WP-spreading and tunnelling currents), as well as the energetics
(ground-state energy), of the quantum mechanical wave aspect of Gaussian WPs can be
obtained from the solutions of the Riccati equation (11) for y(t) (since α2 ∝ 1/yI), or directly
from the solutions of the Ermakov equation (13) for α(t). Qualitative changes in the solutions
of these equations will result in qualitative changes of the dynamics and energetics of the
quantum mechanical wave aspect. The effect of a dissipative environment on these equations
will be discussed in the next section.

4. Changes due to the breaking of time-reversal symmetry

Adding a nonlinear term that takes into account the dissipative environment in our NLSE (7)
does not affect the general form (8) of the WP solution; only the equations of motion for η, y

and α, as well as the dependence of the ground-state energy Ẽ on these quantities, change.
The equation for η describing the motion of the WP-maximum thus fulfils the correct

equation of a classical particle with linear velocity-dependent frictional force

η̈ + γ η̇ + ω2η = 0. (17)

Likewise, a linear term containing the friction coefficient γ is added to the Riccati equation
for y(t),

2h̄

m
ẏ + γ

(
2h̄

m
y

)
+

(
2h̄

m
y

)2

+ ω2 = 0. (18)
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The relation between the imaginary part, yI, and α remains unchanged, as given by (9);
however, the real part, yR, now fulfils

2h̄

m
yR = −1

2

ẏI

yI
− γ

2
= α̇

α
− γ

2
(19)

thus leading to the modified Ermakov equation

α̈ +

(
ω2 − γ 2

4

)
α = 1

α3
. (20)

The ground-state energy, ẼNL, expressed in terms of yR and yI, remains formally
unchanged but, since the relation between yR and α is different from the conservative case,
ẼNL expressed in terms of α now has the form

ẼNL = h̄

4

[(
α̇ − γ

2
α
)2

+
1

α2

]
+

h̄

4
ω2α2. (21)

As in the case of the classical energy of a frictionally damped dissipative system, also
the quantum mechanical contribution ẼNL is now (generally) no longer constant. The change
of the ground-state energy can be expressed in terms of the correlation of position- and
momentum-fluctuations as

d

dt
ẼNL = −γ

4

d

dt
〈[x̃, p̃]+〉NL (22)

where [. . . , . . .]+ denotes the anti-commutator. This part of the energy that is transferred to
the environment can be expressed in terms of α as

γ

4
〈[x̃, p̃]+〉NL = γ

h̄

4

(
α̇α − γ

2
α2
)

. (23)

Therefore, the quantity

ẼNL +
γ

4
〈[x̃, p̃]+〉NL = h̄

4

[
α̇2 +

1

α2
+

(
ω2 − γ 2

4

)
α2

]
= const (24)

is always a constant since it contains both parts of the initial ground-state energy—the one
that remains in the system and the one that is exchanged with the environment. Moreover, it
can be shown that, with the help of appropriately-defined canonical momenta, this constant
of motion can also be used as a Hamiltonian to obtain the equation of motion (20). A similar
treatment for the classical degrees of freedom has been shown in [36].

The qualitative effect of the dissipative environment can be discussed most transparently if
we consider the modified complex Riccati equation (18). For certain choices of the occurring
parameters (e.g., constant ω and γ ), the solution of the inhomogeneous Riccati equation can
be reduced to the solution of a homogeneous complex Bernoulli equation

2h̄

m
v̇ + A

(
2h̄

m
v

)
+

(
2h̄

m
v

)2

= 0 (25)

using the ansatz
(

2h̄
m

)
y(t) = (

2h̄
m

)
ŷ +

(
2h̄
m

)
v(t), where the time-independent particular solution

of the Riccati equation can take the values

2h̄

m
ŷ± = −

(γ

2

)
±
(

γ 2

4
− ω2

)1/2

. (26)

The coefficient A of the linear term in the Bernoulli equation can also have two different
values,

A± = 2

(
γ

2
+

2h̄

m
ŷ±

)
= ±2

(
γ 2

4
− ω2

)1/2

(27)
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which will be of importance subsequently. Equation (25) can be solved analytically and the
solution given in the form

2h̄

m
v (t) =

(
2h̄
m

v0
)
A e−At(

2h̄
m

v0
)
(1 − e−At ) + A

. (28)

From the imaginary parts
(

2h̄
m

)
vI(t) and

(
2h̄
m

)
ŷI, one obtains

(
2h̄
m

)
yI = 1/α2, and, thus, the

solution of the corresponding Ermakov equation (20). The consequences of the occurrence
of the environmental parameter γ in the above-mentioned equations for the dynamics and
energetics, shall now be discussed separately for the damped free motion and the damped
harmonic oscillator.

4.1. Damped free motion

The classical part of the dynamics, i.e. the motion of the WP-maximum, is affected by the
dissipative environment as is expected. Whereas the isolated system moves with constant
velocity 〈v〉L = η̇L = v0 = const, the damped system is slowed down by the interaction
according to 〈v〉NL = η̇NL = v0 exp(−γ t). Therefore, the position is no longer growing
proportional to time t, but approaches a finite value 〈x〉NL(t → ∞) = v0/γ , according to
〈x〉NL = ηNL = v0

γ
(1 − exp(−γ t)).

Considering the time-dependence of the WP-width, the parameter values ω = 0 and
γ = 0 yield, for the isolated system, the particular solution 2h̄

m
ŷ± = ±0 and, in the Bernoulli

equation, A = ±0. Therefore, one obtains only one solution that leads to the well-known
position uncertainty that is growing proportional to t2,

〈x̃2〉L = 〈x̃2〉0
{
1 + (β0t)

2} (29)

where β0 = (
h̄/2m〈x̃2〉0

)
.

Including the interaction with the environment, i.e. for γ �= 0, the particular solution
2h̄
m

ŷ, as well as the parameter A in the Bernoulli equation, can possess two different values,
thus leading to two WPs with different time-dependence of the spreading of the width. For
A± = ±γ , one obtains

〈x̃2〉+ = 〈x̃2〉0

{
eγ t +

(
β0

γ /2

)2

sinh2 γ

2
t

}
(30)

〈x̃2〉− = 〈x̃2〉0

{
e−γ t +

(
β0

γ /2

)2

sinh2 γ

2
t

}
. (31)

Already, because of the sinh2-term, both WPs are spreading faster than in the isolated
case; for 〈x̃2〉+, due to the eγ t -term, even exponentially. A formal mathematical explanation
for this behaviour can also be given (see, e.g., [22]). The energies, Ẽ±, calculated with the
help of the two solutions of the Riccati equation, make it even more obvious that the two WPs
have different physical properties, since

Ẽ+ = h̄

4
β0 e−γ t (32)

Ẽ− = h̄

4
β0

[
1 +

(
γ

β0

)2
]

e−γ t . (33)
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The two systems have, for all times, different ground-state energies and the energy
difference

	Ẽ = Ẽ− − Ẽ+ = h̄

4

γ 2

β0
e−γ t = m

2
γ 2〈x̃2〉0 e−γ t (34)

does not depend on h̄, but only on the parameters of the system
(
m, 〈x̃2〉0

)
and, particularly,

of the environment (γ ). The energy difference disappears for γ → 0.
The energy contribution from the motion of the WP-maximum is, in the conservative as

well as in the dissipative case, the same as for a corresponding classical particle and is therefore
not relevant to our study.

4.2. The damped harmonic oscillator

Considering, first, the dynamics in the reversible case, i.e. γ = 0, the maximum of the WP
oscillates with constant frequency ω and constant amplitude, just as a corresponding classical
particle. Regarding the WP-width, it is obvious that the particular time-independent solutions
2h̄
m

ŷ± = ±iω are purely imaginary, where only the positive solution is physically reasonable
and the negative one leads to a divergent WP. Since the WP-width 〈x̃2〉L = h̄/2mω is constant,
αL is also constant; thus, because α̇L = 0, there is no contribution to the probability flux via v−.
Oscillatory solutions also exist but are irrelevant to the following discussion.

In the damped irreversible case, i.e. γ �= 0, one has to distinguish between different
relations between the parameters ω and γ . It emerges that the aperiodic limit, i.e. ω = γ /2.
yields the desired qualitative effects. Nevertheless, the case of undercritical damping, i.e.
ω > γ/2, will be mentioned briefly. In this case, the WP-maximum, like the classical
counterpart, oscillates with reduced frequency 
 = (ω2 −γ 2/4)1/2 and exponentially-damped
amplitude. There is also a solution with constant WP-width 〈x̃2〉NL = h̄/2m
 that does not
contribute to the probability flux. For the oscillatory solutions, the above-mentioned applies.

In the aperiodic limit, the WP-maximum again displays the classical behaviour, i.e. no
oscillations but exponential damping of position and velocity according to 〈x〉ap = ηap =
v0t exp(−γ t/2), 〈v〉ap = η̇ap = v0(1 − γ t/2) exp(−γ t/2). More interesting, however, is the
behaviour of the WP-width since it is no longer constant but grows according to

〈x̃2〉ap = 〈x̃2〉0
{
1 + (β0t)

2
}

(35)

i.e., it grows quadratically in time, as in the case of the free motion without damping. This
appears as if the effect of the environment compensates for the effect of the confining harmonic
potential. Since 〈x̃2〉ap = (h̄/2m)α2

ap is now time-dependent, α̇ap �= 0 and, therefore, there is
a contribution to the flux that is identical to the case of the undamped free motion.

What is the environmental effect on the energetics in the above-mentioned cases? For the
undercritical damping, the contribution from the motion of the WP-maximum shows, again,
the same behaviour as the classical system, namely, an exponential decrease. The quantum
contribution ẼNL shows only a shift in the constant ground-state energy. Compared with the
undamped case, where

ẼL = h̄

2
ω (36)

is valid, the ground-state energy of the undercritically damped harmonic oscillator is slightly
higher,

ẼNL = h̄

2
ω
(ω




)
> ẼL (37)

due to some energy back-transfer from the environment (for further details see [21]).
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For the aperiodic limit, ω = γ /2, the classical part of the energy also decreases
exponentially according to

Eap = E0

[(
1 − γ

2
t
)2

+
(γ

2
t
)2
]

e−γ t . (38)

The quantum mechanical contribution Ẽap, however, is no longer constant, as in the
undercritical case, but fulfils

Ẽap = h̄

4
β0

[
2

( γ

2

β0

)2

+
(

1 − γ

2
t
)2

+
(γ

2
t
)2
]

. (39)

Apart from a constant contribution, it also contains two terms that are growing
quadratically in time, such as the terms in the classical energy, but without the exponential

damping factor. The initial ground-state energy Ẽap,0 = h̄
4β0

[
1 + 2

( γ

2
β0

)2]
drops after tmin =

1/γ to its minimum value Ẽap,min = h̄
4β0

[
1
2 + 2

( γ

2
β0

)2]
and, afterwards, grows quadratically

in time. Where does the energy gained by the quantum system come from? Considering the
term describing the correlations of position- and momentum-fluctuations,

γ

4
〈[x̃, p̃]+〉ap = − h̄

4
β0

[(
1 − γ

2
t
)2

+
(γ

2
t
)2
]

+
h̄

4
β0

[
1 − 2

( γ

2

β0

)2
]

(40)

that represents the effect of the environment, one finds the same terms growing quadratically
in time, as in Ẽap , only with a negative sign; and the sum of quantum energy contributions of
the system and the environment,

Ẽap +
γ

4
〈[x̃, p̃]+〉ap = h̄

4
β0 = const (41)

is always a constant, as already mentioned above.

5. Conclusions

We found that, according to our model, the interaction with a dissipative environment should
lead to new qualitative effects on the dynamics and energetics of quantum systems. The
breaking of time-reversal symmetry introduces a new (environmental) parameter, the friction
coefficient γ , with several consequences.

The occurrence of a nonzero parameter γ creates the possibility of bifurcations in the
Riccati equation (18). For the damped free motion, this leads to two different WP-solutions
with different quantum dynamics, i.e. different spreading behaviour of the WP-width. In both
cases, however, the WPs of the interacting quantum systems are spreading faster than the WP
of the isolated system. This shows some similarity with experimental results by Nimtz [37],
where Gaussian-like pulses reach a higher signal velocity in the presence of barriers—i.e.
obstacles, such as collision partners of some environment—than without. Any connection
between our theoretically-predicted and this experimental effect will be investigated in a
forthcoming work. Also, the tunnelling behaviour, according to the α̇/α-term in the current
of the continuity equation/Fokker–Planck equation, is affected by this deviant spreading
behaviour. When considering the energies of the WPs, it also becomes obvious that the two
WP-solutions actually describe systems that are physically distinguishable. The breaking
of the time-reversal symmetry leads to a splitting of the ground-state energy—similar to the
splitting of energy levels due to reduction of spatial symmetry—where the energy gap between
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Ẽ+ and Ẽ− is dependent on the parameter γ and disappears for γ → 0. Although both ground-
state energies decay exponentially, they are different for all times. In principle, this energy
gap should be measurable, but a proper experimental set-up has not yet been found.

In the case of the damped harmonic oscillator, the environmental parameter γ presents
the possibility of compensating for the effect of the harmonic potential, represented by
the parameter ω, the oscillation frequency, if ω = γ /2 is fulfilled. In this aperiodic
limit, the dynamics of the quantum system shows a qualitatively different behaviour from
the undercritical damped situation, ω > γ/2. This behaviour is similar to a resonance
phenomenon where, as long as the oscillatory frequency of the system and the frequency of
the external excitation differ, there is no effect. However, as soon as these two frequencies are
identical, absorption of energy, i.e. a flux of energy from the external excitation to the system,
occurs. In our case, the external frequency is (half of) the damping parameter (collision
frequency) γ . For γ /2 = ω, a flux is created that does not exist without the environment, and
energy is transferred from it to the system.

Considering the environment as a heat bath (eventually infinite), this might appear, at
first sight, to be a violation of the laws of thermodynamics. However, this is not the case
since the energy from the heat bath is not transferred into the classical degrees of freedom
of the system; in other words, the WP does not start oscillating with increasing amplitude in
this resonance-like situation, but is still damped exponentially. Only the quantum part of the
system’s energy, Ẽ, absorbs energy from the surroundings, so thermal energy is transferred into
quantum mechanical energy, and, furthermore, in a way that the sum of the energies of system
and surroundings always remains constant. Somehow, this displays similarities with thermal
chemical reactions, but it would be desirable to find experiments in which this resonance-like
behaviour of the flux can also be detected. The macroscopic quantum effects mentioned in
the introduction, where the variation of an external parameter, the temperature T (which is
usually proportional to the collision frequency), also under resonance-like conditions, leads
to the creation of fluxes (quantum-Hall flux, superconducting current), show some qualitative
similarities. However, the questions of whether there are any connections with our above-
mentioned results and of what kind they might be require further investigation.
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